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Abstract

A new balanced-force algorithm is presented for modeling interfacial flow with surface tension. The algorithm is char-
acterized by a pressure-correctionmethodwith the interfaces represented by volume fractions.Within this flow algorithm,
we devise a continuous (e.g., continuum surface tensionmodel) and a sharp (e.g., a ghost fluidmethod) interface represen-
tation of the surface-tension-induced interfacial pressure jump condition. The sharp interface representation is achieved by
temporarily reconstructing distance functions from volume fractions. We demonstrate that a flow algorithm designed to
legislate force balance retains an exact balance between surface tension forces and the resulting pressure gradients. This
balance holds for both continuous and sharp representations of interfacial surface tension. The algorithm design elimi-
nates one of the elusive impediments to more accurate models of surface tension-driven flow, the remaining of which is
accurate curvature estimation. To validate our formulation, we present results for an equilibrium (static) drop in two
and three dimensions having an arbitrary density jump across the interface.We find that the sharp surface tensionmethod
yields an abrupt pressure jump across the interface, whereas the continuous surface tension method results in a smoother
transition. Bothmethods, however, yield spurious velocities of the same order, the origin of which is due solely to errors in
curvature. Dynamic results are also presented to illustrate the versatility of the method.
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1. Introduction

Interfacial flows with surface tension are encountered frequently in industrial and engineering applica-
tions, a prototypical example being material processing. Accurate modeling of such flows is challenging be-
cause of the discontinuity in material properties across the interface and because of interfacial boundary
conditions due to surface tension forces.

The continuum surface force (CSF) method of Brackbill et al. [1] has been employed extensively over the
last 13 years to model surface tension in various fixed (Eulerian) mesh formulations for interfacial flows, in
particular in the volume-of-fluid (VOF) [13,19,16], level-set (LS) [12,24] and front tracking (FT) [28,18]
interface representation techniques. Surface tension forces acting on the interface are transformed to vol-
ume forces in regions near the interface via delta functions, leading to ideally discontinuous interfacial jump
conditions being modeled as smooth.

Issues remain with CSF, however, despite its wide use. The CSF method has the propensity to generate
unphysical flow (‘‘spurious currents’’) near the interface when surface tension forces are dominant. These
spurious currents are best illustrated in the limiting case of an inviscid static drop in equilibrium without
gravity where Laplace�s formula applies. The major reason for the spurious currents is a numerical imbal-
ance of the surface tension force and the associated pressure gradient. In the context of sharp interface rep-
resentation techniques such as VOF and FT, several studies have proposed different ways to reduce these
spurious currents by either improving curvature estimation [17,22,29], improving the flow algorithm
[18,23,26], or by combining better algorithms with interface curvatures estimation [16,19]. Jamet et al.
[11] have been able to eliminate these spurious currents from a minimal energy consideration, but only
in the context of a diffuse interface representation technique.

Recently, ghost fluid methods (GFMs) have been proposed in [15] to impose sharper boundary condi-
tions on embedded boundaries. Since GFM require knowledge of the distance from the interface, and since
this information is naturally carried in LS methods, GFM have been applied successfully to model inter-
facial flow with surface tension [12] in conjunction with a LS technique. However, results in [12] also show
a persistence of spurious currents as well as a loss of mass conservation.

In this paper, working within a volume tracking framework, we introduce a new balanced-force algorithm
characterized by a pressure-correction method that leads to an exact balance of the pressure gradient with the
surface tension force and therefore a commensurate reduction of the spurious currents. By temporarily recon-
structing distance functions from volume fractions using the technique described in [6], we provide an alter-
native method to model surface tension forces within a mass-conservative volume tracking framework.
Armed with an ability, then, to model surface tension forces with either a CSF model or a GFM within the
same balanced-force algorithm, we then assess the relative strengths and weaknesses of each approach on
appropriate (anddifficult) test problems.Herewe investigate the accuracy of the differentmethods andaddress
whether or not there are advantages in using a sharp approach over the continuous one.

The structure of the paper is as follows. In Section 2,we present the governing equations andwe describe the
balanced-force flow algorithm in detail. In Section 3, we present the continuous and sharp surface tension
models with two improved interfacial curvature models. In Section 4, we present the results for the case of
a drop in static equilibrium and for the dynamic cases of an oscillating drop and a rising bubble by buoyancy.
2. Balanced-force formulation

2.1. Governing equations

In the VOF method, a single set of mass and momentum conservation equations is solved on a fixed grid
and the volume fraction f of the fluids (ratio of fluid to total volume) is evolved with an advection equation.
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In this work we assume the flow to be incompressible. The governing equations are the equations for the
advection of the volume fraction f:
of
ot

þ u � rf ¼ 0; ð1Þ
and mass and momentum conservation:
r � u ¼ 0; ð2Þ
oðquÞ
ot

þr � ðquuÞ ¼ �rP þr � ðlðruþrTuÞÞ þ F; ð3Þ
where u is the velocity field, P the total pressure, F any body force (such as the gravitational acceleration or
surface tension), and q and l are the fluid density and viscosity, respectively, defined as
q ¼ q1f þ q2ð1� f Þ; ð4Þ
l ¼ l1f þ l2ð1� f Þ. ð5Þ
Here the subscripts 1 and 2 denote fluid 1 and fluid 2, respectively. The expression for density in Eq. (4)
results from mass conservation, whereas the expression for mixture viscosity in Eq. (5) is an approximation
(others can be used, e.g., see [5]). In computational cells occupied with fluid 1, f is unity, and in cells occu-
pied with fluid 2, f is zero. For cells containing the interface bounding fluid 1 and 2, f lies between zero and
unity. The volume fractions of fluid 1 and 2 sum to unity everywhere.

2.2. Proper implementation of surface tension force within the flow algorithm

In this section, we present our balanced-force algorithm for incorporating the surface tension force, de-
noted as F, within a pressure-correction flow algorithm [3]. This algorithm is developed in order to ensure
that pressure gradient force is balanced exactly by the surface tension force (for static cases). The pressure-
correction algorithm is characterized by collocated variables on the computational mesh, in that primary
variables u and P reside at cell-centers, and to ensure discrete solenoidality a face-centered velocity is com-
puted and used for advection.

To initialize the volume fractions f, we employ a recursive local mesh refinement technique. Here, we
choose four levels of subdivisions and approximate the interface by linear segments at the finest level as
in [6]. This recursive technique is simple and converges to second-order as shown in [6]. The global error
is O(10�6) for a circular drop on a uniform mesh of resolution R/h = 10, where R is the drop radius and
h the mesh spacing.

The VOF advection equation, Eq. (1), is solved with a PLIC (piecewise linear interface calculation) algo-
rithm [8,13,21] which consists of two steps. First, planar interfaces are reconstructed and then geometry-
based fluid volumes fluxed across cell faces are computed:
f nþ1 � f n

Dt
¼ �un � rf n. ð6Þ
Once the volume fractions are advected, fluid properties such as density are updated using Eq. (4) and fn + 1.
The momentum equation is discretized first-order in time and is split into a ‘‘predictor’’ and a ‘‘corrector’’
step:
qnþ1u� � qnun

Dt
¼ �r � ðquuÞn �rPn þ Fn; ð7Þ

qnþ1unþ1 � qnþ1u�

Dt
¼ �rdPnþ1 þ Fnþ1 � Fn; ð8Þ
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where the superscripts n and n + 1 represent the current and next time level, respectively, and the super-
script * represent an intermediate level. The change or increment in pressure is dPn + 1 = Pn + 1 � Pn.

The predictor step, Eq. (7), is first solved for an intermediate velocity at cell-centers:
Fi
qnþ1
c u�c ¼ qn

cu
n
c � Dt

X
f

unc

X
k

qkfk

 !
ðuf � nfÞAf � Dtqnþ1

c

rP
qf

� Ff

qf

� �n

f!c

; ð9Þ
where nf is the normal vector to the face, Af is the face area, the subscript k is the material index, the sub-
scripts c and f denotes cell-centered and face-centered quantities, respectively (illustrated in Fig. 1(a)). The
operator Æ æf ! c denotes an appropriate averaging of a face-centered quantity to a cell-centered quantity.
For example, for the x component of the cell centered vector, ~w, the operator is defined as:
x̂ � h~wif!c ¼
Pn faces

f ð~wf � x̂Þjnx;fAf jPn faces
f jnx;fAf j

. ð10Þ
Momentum advection, the second term on the RHS of Eq. (9), is performed in the same way as VOF-
based mass advection in interface cells [2] namely by assigning momentum crossing cell faces as the product
of VOF-based mass and the donor cell fluid velocity. The viscous term on the RHS of Eq. (9) has been
omitted for simplicity, although it is implemented fully implicitly, semi-implicitly or fully explicitly in the
numerical code used in this paper [25]. In order to design an exact balance between pressure and surface
c

f

i,j i+1,ji-1,j

i,j+1

i,j-1

i+1/2,j i-1/2,j

i,j+1/2 

i,j-1/2 
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b

g. 1. Cell index notation referred to in the text, with (a) giving c and f index locations and (b) giving i, j index locations.



M.M. Francois et al. / Journal of Computational Physics 213 (2006) 141–173 145
tension forces, the gradient operators in these two terms must be considered together as well as discretized
identically and at the same location. As a result, in our formulation, since the gradient in pressure is esti-
mated at cell faces, we must also estimate the surface tension force term at cell faces for consistency. This is
a key point in our balanced-force algorithm, which has also been emphasized recently in other flow algo-
rithms of [7,16,19].

Once the intermediate velocity u�c is estimated with Eq. (9), the intermediate face-centered velocity u�f is
evaluated. In doing this, we take care to ensure that the vector quantity interpolated from cell to face cen-
ters (and vice versa) is not the velocity field, but rather the total vector field (prior to application of the
projection correction) [4]. Proper projection correction occurs via application of pressure and surface ten-
sion forces at the required (face-centered) location, not by interpolating the forces from another location
(cell centers) to the location of interest (face centers). This procedure can be also viewed as a modification
of the Rhie–Chow [20] procedure to ensure pressure–velocity coupling. First, the intermediate velocity at
cell-centers is negated by adding back the cell-centered approximation to the difference between the surface
tension force and the pressure gradient, i.e., the total vector field is reacquired at cell faces. The total cell-
centered vector field is then interpolated by simple averaging to the cell face. Finally, the difference between
the surface tension force and pressure gradient is added to the cell face (the projection correction is reap-
plied at the location of interest), giving:
u�f ¼ u�c þ Dt
ðrP Þf
qf

� Ff

qf

� �n

f!c

� �
c!f

� Dt
qnþ1
f

½ðrP Þnf � Fnþ1
f �; ð11Þ
where the operator Æ æc ! f is an interpolation of a cell-centered to a face-centered quantity. For example on
a two-dimensional uniform Cartesian mesh, the interpolation of the cell-centered quantity w on the right
face of cell (i, j) is given by a simple average:
hwic!f ¼ wiþ1=2;j ¼
1

2
ðwi;j þ wiþ1;jÞ. ð12Þ
A discrete solenoidal condition is now imposed upon the face-centered velocity, yielding the following
Poisson equation for the correction in pressure:
r � ðrdPnþ1
c Þf

qnþ1
f

� �
¼ �r � u�f

Dt

� �
. ð13Þ
This pressure correction (Eq. (13)) is solved for the change in cell-centered pressure dPc using a two-level
preconditioned GMRES solution technique [25]. Given the new cell-centered pressure field, the velocity
field is then corrected both at cell face and cell-center, respectively:
unþ1
f ¼ u�f � Dt

ðrdPnþ1
c Þf

qnþ1
f

� �
; ð14Þ

unþ1
c ¼ u�c þ Dt

ðrPÞf � Ff

qf

� �n

f!c

� Dt
ðrP Þf � Ff

qf

� �nþ1

f!c

. ð15Þ
The density at faces (qf) is taken to be a simple geometric average of the cell-center densities on either side
of the face under consideration, which is consistent with continuity of acceleration across the cell face. For
a uniform two-dimensional Cartesian mesh the face density between cell i and i + 1 then becomes
qf ¼ qiþ1=2;j ¼
1

2
ðqi;j þ qiþ1;jÞ; ð16Þ
where the cell index notation (f, i, j) is illustrated in Fig. 1.
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The complete balanced-force flow algorithm from time step n to time step n + 1 can now be summarized
as follows:

1. advect the time n volume fractions f to obtain the volume fraction at time n + 1, fn + 1 (Eq. (1));
2. solve the predictor step for u�c (Eq. (9));
3. transfer the cell-center velocity u�c to face center velocity u�f (Eq. (11));
4. solve the pressure equation for dPnþ1

c (Eq. (13)), then obtain Pnþ1
c ; and

5. correct the face-centered velocity field unþ1
f (Eq. (14)) and cell-centered velocity field unþ1

c (Eq. (15)).

This balanced-flow algorithm is implemented in the Truchas software [25] as part of the Telluride project
at Los Alamos National Laboratory. The Truchas software is the framework for all algorithm implemen-
tation and numerical results in the present paper.

In the results section, we compare the above face-centered formulation with a cell-centered formulation
in which the surface tension term only appears in the predictor step:
qnþ1u�c ¼ qnunc � Dt
X
f

unc

X
k

qkfk

 !
ðuf � nfÞAf � Dtqnþ1

c

rP
qf

� �n

f!c

� DtFn
c ; ð17Þ
which is the standard implementation for most previously published body force models for surface tension,
i.e., through application of an explicit force at the center of the momentum control volume (which is cell-
centered). As will be shown in the following, however, this implementation is markedly inferior to the
face-to-cell centered formulation (balanced-flow algorithm given in Eq. (9)) in which a cell-centered surface
tension force is derived from a consistent averaging of face-centered forces. It is demonstrated that this face-
centered formulation gives an exact balance between the surface tension force and the pressure gradient for
the case of a static drop when the curvature is imposed to its exact value. Here an ‘‘exact balance’’ for this
equilibrium problem is deduced from the resulting velocity field, which is of the order of round-off. There-
fore, the remaining task is an accurate evaluation of the interfacial curvature. In the next section, we present
the continuous and sharp approaches to model the surface tension force. We also detail techniques that are
employed to compute curvatures.
3. Surface tension model

3.1. Continuous approach

In the following, FCSF, denotes the continuum surface force (CSF) defined as [1]:
FCSF ¼ rjn̂d; ð18Þ

where r is the surface tension coefficient (assumed constant for this work), j is the interfacial curvature, n̂ is
the interface unit normal, d is the Dirac Delta function. Here, we reformulate the CSF by simply replacing
the product of the delta function and the unit normal with the gradient of the volume fraction. For a con-
sistent coupling of the surface tension force with pressure gradient forces within the flow algorithm, FCSF is
estimated at faces as
FCSF
f ¼ rjfðrf Þf . ð19Þ
The surface tension force FCSF is non-zero only on faces where the face gradient of the volume fraction
($f)f is non-zero. In discretized form on a two-dimensional Cartesian mesh, for example at the left face of
cell (i, j), the x- and y-components of the surface tension force are approximated as
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FxCSFi�1=2;j ¼ rji�1=2;j
fi;j � fi�1;j

Dx
and FyCSFi�1=2;j ¼ 0; ð20Þ
where the volume fractions are assumed to vary negligibly along (tangential to) faces (of/oy in this case). If
this ‘‘stair-stepped’’ approximation of the gradient of the volume fractions were to be relaxed (which is eas-
ily done), the profile of the gradient will become more diffuse, losing as a result some interface locality desir-
able for the balance of the surface tension forces with the pressure gradient. The curvature j in Eq. (18) is
first computed at cell-centers and then interpolated at faces, with the interpolation techniques described in
Section 3.4.

3.2. Sharp approach

In the GFM [15], an interfacial jump condition is applied as rigorously on the interface as the distance
function / allows. The distance function is zero on the interface, negative inside the interface (fluid 1) and
positive outside the interface (fluid 2). To illustrate the GFM, we consider as an example the discretization
of the equation $2P = 0 in one-dimension with uniform points (separated by equal Dx spacing), where
across the interface a jump condition in pressure ([P] = A) exists. In this example the interface is located
between Pi and Pi + 1 where / changes signs (between points i and i + 1) as illustrated in Fig. 2. The dis-
cretized equations using central differences become:
P iþ1 � 2P i þ P i�1

Dx2
¼ A

Dx2
; ð21Þ

P iþ2 � 2P iþ1 þ P i

Dx2
¼ � A

Dx2
; ð22Þ
where the jump value A appears in the right-hand side of the equations.
Since in the present work surface tension is modeled within a VOF framework (where interfaces are rep-

resented by volume fractions), a temporary distance function must be ‘‘reconstructed’’ at each integration
time step. Here the reconstructed distance function (RDF) technique proposed in [6] is used. First, distances
in a direction normal from the piecewise linear interface segments (available from the PLIC VOF interface
reconstructions) to all nearby (nearest neighbor) cells are computed using simple geometrical relations. The
i-1 i i+1

Interface

i+2

P

Ghost Values

Real Values

P+

P-

A
φ < 0 φ > 0 

φ = 0 

Illustration of the GFM�s ability to impose a sharp pressure jump condition due to the surface tension force via a specialized
ization of the pressure P across the interface.
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piecewise linear segments are constructed based on volume fractions [21] and are part of the VOF tech-
nique. The normal distances from all nearby interface segments to the reference cell are accumulated with
appropriate weights to obtain the distance function. The weights are function of the angle made by the
interfacial normal and the vector defined by connecting the reference cell centroid to the centroid of the
interfacial linear segment. The smaller the angle for a particular interface segment, the greater the contri-
bution (weight) of the normal distance to that segment. The reconstructed distance function is second-order
accurate as shown in [6].

We denote the present sharp approach by SSF (sharp surface tension force). The surface tension force
term is non-zero only at faces across which the distance function / changes sign. For example, if /i,j 6 0
and /i � 1,j > 0 across the (i � 1/2, j) face of cell (i, j), the surface tension term (on a uniform Cartesian mesh)
becomes
FxSSFi�1=2;j ¼
rjI

Dx
and FySSFi�1=2;j ¼ 0. ð23Þ
If, on the other hand, /i,j > 0 and /i � 1,j 6 0, the surface tension term becomes
FxSSFi�1=2;j ¼ � rjI

Dx
and FySSFi�1=2;j ¼ 0; ð24Þ
where the subscript I denotes on the interface and Dx is the grid spacing across the face (distance between
cell centroids). The interpolation of local cell curvature values to the interface is described in Section 3.4.
Note that in the sharp approach, logical tests are necessary to identify the non-zero surface tension terms,
which are not required in the continuous approach.
3.3. Comparison of continuous and sharp formulations

To illustrate the difference in formulation between the continuous and sharp approaches, consider a one-
dimensional example, illustrated in Fig. 3. The interface location within the grid is given in the first row,
with the corresponding volume fractions f and distance functions / given in the second and forth row,
respectively. The grid spacing Dx and rj are assumed constant and equal to unity. Assuming the initial
pressure is zero for this case, the surface tension force terms for the first time step iteration enter the
right-hand side (RHS) of the pressure-correction equation (13) through u�f . The RHS for the continuous
approach and for the sharp approach are given in the third and fifth row, respectively, of Fig. 3. For both
formulations the non-zero terms sum to zero, with the difference between the two formulations being solely
in the distribution of the terms. As expected, the continuous approach has a smooth RHS transition,
whereas the sharp approach has a more abrupt transition with larger extrema.
3.4. Curvature models

The interfacial curvatures are estimated using the time-advanced advected volume fractions (fn + 1). We
consider here two different curvature approximations: a convolution technique and a height function meth-
od, described next.
3.4.1. Convolution technique

For the convolution technique, the work of Williams [29,30] is followed. The interfacial normal vector at
cell centroids is obtained by convolving the volume fractions with the first derivatives of the kernel K6:
~̂nc ¼ ðK6x � f ;K6y � f ;K6z � f Þ; ð25Þ



Fig. 3. One-dimensional example of the right-hand side of the pressure equation through a discrete interface at the first time step for
the continuous (CSF) and sharp (SSF) interfacial surface tension models. Shown in the boxes are discrete values of the volume fraction
(f) and resulting pressure for the CSF model and distance function (/) and resulting pressure for the SSF model.
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where * denotes the convolution operation, defined as
K6x � f ¼
Z

K6xðx0 � xÞf ðx0Þ dx0; ð26Þ
with K6 defined as:
K6ðr; dÞ ¼
Aðd2 � r2Þ3 if r

d < 1;

0 otherwise

(
ð27Þ
and its derivative with respect to x given by
K6x ¼
oK6

ox
¼ �6Axðd2 � r2Þ2; ð28Þ
where r2 = x2 + y2 + z2. Similar expressions follow for K6y and K6z. The constant A is chosen to normalize
the kernel. The sixth-order kernel K6 is chosen here over the eight-order kernel K8 used in [30] because K6 is
not as highly peaked as K8, therefore does not require as large a smoothing length (hence as much resolu-
tion) as K8.

Given the cell-centered convolved unit normal estimated according to Eq. (21), the cell-centered curva-
ture j is evaluated directly with a discrete divergence operator,
jc ¼ �r � ~̂nc. ð29Þ

Face-centered curvatures (required in our method for application of face-centered CSF forces) are esti-
mated by interpolating the cell-centered curvatures computed in Eq. (29) with a simple arithmetic average.
For example, on a two-dimensional Cartesian grid at face (i + 1/2,j) of cell (i, j), the face curvature is esti-
mated by
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jiþ1=2;j ¼
1

2
ðji;j þ jiþ1;jÞ; ð30Þ
but only if volume fraction gradient at face (i + 1/2, j) is non-zero (i.e., $ff 6¼ 0). Another method for esti-
mating curvatures at faces is to directly evaluate its value at faces (without interpolation); this approach will
be considered in future work.

For the sharp surface tension model, curvature on the interface is needed, hence it must be interpolated
from cells in the proximity of the interface using distance function information. For example if the distance
function changes sign between cell (i, j) and (i + 1, j), the curvature at the interface is estimated by
j1 ¼
ji;jj/iþ1;jj þ jiþ1;jj/ij

j/i;jj þ j/iþ1;jj
. ð31Þ
3.4.2. Height function technique

The height function [6,10,16,22,27] technique utilizes a geometrical method for estimating curvatures. A
height function is reconstructed locally as an approximation of the interface location, and it is based on
volume integrals (discrete sums) of volume fractions. The integration direction for the height function is
taken to be in the direction of the largest component of the interface normal vector. For the height function
integration volume, a 7 · 3 stencil is employed in two dimensions and a 7 · 3 · 3 stencil (7 cells along the
direction of the height function, with 3 cells above and below the reference cell) is employed in three dimen-
sions. Seven cells are chosen based on relative accuracy comparisons with smaller stencils as illustrated in
two-dimensions in Fig. 4(a). It should be noted, however, that this large stencil can be problematic (too
large) in regions of high curvature where the radius of curvature is of the order of (or smaller) than the mesh
spacing. Here the stencil must be reduced in proportion to the radius of curvature.

As an example of how the height function technique is used to estimate curvature in three-dimensions,
consider a case where the largest interface normal component is in the z-direction (i.e., |nz| > |nx|, |ny|). One
can then locally construct nine height functions in the z-direction by summing the volume fractions in the z-
direction (as shown in Fig. 4(b)):
Hi;j;k ¼
Xkþ3

k�3

fi;j;kDzk for i ¼ i0 � 1; i0; i0 þ 1 and j ¼ j0 � 1; j0; j0 þ 1; ð32Þ
where Hi,j,k represents the nine height functions along the z-direction. The curvature is then estimated from
these height functions as:
j ¼ fz
jfzj

� �
�
Hxx þ Hyy þ HxxH 2

y þ HyyH 2
x � 2HxyHxHy

ð1þ H 2
x þ H 2

yÞ
3=2

; ð33Þ
where the derivatives with respect to x and y are estimated using a standard second-order finite-difference
scheme. For example, the derivatives of H with respect to x (and similarly for y) on a uniform spaced mesh
of spacing Dx in the x-direction are
Hx ¼
Hiþ1;j;k � Hi�1;j;k

2Dx
; ð34Þ

Hxx ¼
Hiþ1;j;k � 2Hi;j;k þ H i�1;j;k

Dx2
; ð35Þ
and the cross derivative is:
Hxy ¼
Hiþ1;jþ1;k � Hiþ1;j�1;k � Hi�1;jþ1;k þ Hi�1;j�1;k

2Dx � 2Dy . ð36Þ
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Fig. 4. (a) Illustration of the effect of stencil choice for the height function method in 2D estimates of curvature and (b) the nine height
functions z = z(x,y) for estimating curvature in 3D.
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In two-dimensions curvatures are estimated for all interfacial cells, and in three-dimensions this estimate
is obtained only in those cells actually containing the height function. Since curvature estimated from
height functions is only defined at the centroid position within cells as specified by the ‘‘height’’ given by
the height function value, one must interpolate the curvature to faces. The following interpolation is used:
jiþ1=2;j ¼
1
2
ðji;j þ jiþ1;jÞ if H defined in cells ði; jÞ and ðiþ 1; jÞ;
ji;j if H defined in cell ði; jÞ and if H not defined in cell ðiþ 1; jÞ.

(
ð37Þ
To estimate curvature on the interface, which is necessary in the sharp representation for surface tension,
the face-valued curvature above is used. This is found to give a good approximation of the interfacial cur-
vature jI, the key being to recognize in which cells H is defined and not defined.



152 M.M. Francois et al. / Journal of Computational Physics 213 (2006) 141–173
Another way to interpolate curvatures to faces is to use a kernel K for the weighting coefficients:
jf ¼
P

jcKV cP
KV c

; ð38Þ
where Vc is the cell volume. In the result section, we investigate the errors introduced by these various cur-
vature models.
4. Numerical examples

We now look at applications of the above algorithm to three test cases: static drop in equilibrium (Sec-
tion 4.1), oscillating drop (Section 4.2) and a rising bubble by buoyancy (Section 4.3).

4.1. Static drop in equilibrium

To validate our formulation, we consider the test case of a static drop in equilibrium without gravity.
The exact jump in pressure across the drop in this case is given by:
DP exact ¼ rj; ð39Þ

and the exact curvature is given by:
jexact ¼
1=R in 2D;

2=R in 3D.

�
ð40Þ
The computational domain considered is a cube having side lengths of eight units. The drop is positioned
at the center of the domain with a radius R = 2. The surface tension coefficient r is taken to be 73, the den-
sity inside the drop is q1 = 1 and the background fluid density q2 is varied from 1 to 0. The exact pressure
difference DP is 36.5 in two dimensions (2D) and 73 in three dimensions (3D). This case corresponds to the
test case analyzed by Williams et al. [30]. Here, 2D and 3D computations are performed. Initially the veloc-
ity and pressure are zero. The CFL number limit in all these computations is 0.4. Velocity boundary con-
ditions are free-slip, i.e., the normal component of velocity is zero. The computational mesh is uniform with
Dx = Dy = h, with mesh resolution considered such that R/h = 5, 10, 20, and 40. The capillary time step
constraint is taken as:
Dt 6
�qðDxÞ3

2pr

" #1
2

ð41Þ
with �q ¼ q1þq2
2

as in [1].
In the computational results that follow, the error in the pressure jump and in the maximum velocity is

investigated. The numerical jump in pressure is evaluated in three different ways:

(1) DPtotal = Pin � Pout where the subscripts ‘‘in’’ denotes inside the drop (averaged for cells with r 6 R)
and ‘‘out’’ outside the drop (averaged for cells with r > R);

(2) DPpartial = Pin � Pout where the subscripts ‘‘in’’ denotes inside the drop (averaged for cells with r 6 R/
2) and ‘‘out’’ outside the drop (averaged for cells with r P 3R/2) to avoid considering the transition
region; and

(3) DPmax = Pmax � Pmin where the subscripts ‘‘max’’ denotes maximum and ‘‘min’’ minimum on the
entire domain.
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The relative pressure jump error is evaluated as:
EðDPÞn ¼
jDPn � DP exactj

DP exact

; ð42Þ
where the subscript n denotes one of the three different evaluations (total, partial or max).
To measure the error in velocity, we employ the following L error norms:
L1ðuÞ ¼
PN

n¼1kunk
N

; ð43Þ

L2ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1kunk

2
q

ffiffiffiffi
N

p ; ð44Þ

L1ðuÞ ¼ jujmax ¼ maxðkukÞ; ð45Þ
where i i is the magnitude (norm) of the velocity vector u.

4.1.1. Static drop: continuous and sharp surface tension models with exact curvature

First we test the coupling of the surface tension force with the pressure gradient in the new flow algo-
rithm. For this test case, we impose the exact curvature given in Eq. (40) in the calculations. We consider
a 2D drop on a mesh of resolution R/h = 10 for varying density ratios ranging from 1 to infinity, and im-
pose a constant time step of 10�6 for all the cases, which is well within the limit of the capillary time step
constraint defined in Eq. (41). Our convergence criteria for the pressure-correction equation (13) is 10�12. In
the previous works of Brackbill et al. [1] and Kothe et al. [13] a density scaling of the CSF is found to im-
prove the CSF method�s performance in high density ratio flows. Here we also investigate this issue. This
density-scaled surface tension force is defined at cell face as:
F
CSF

f ¼ qf

�q
FCSF
f . ð46Þ
We compare in Table 1 the results for the maximum velocity and pressure jump after one time step with
the continuous CSF approach (described in Section 3.1), the density-scaled CSF given in Eq. (46), and the
sharp SSF approach (described in Section 3.2). For the CSF method we compare both the cell-centered
equation (17) and face-centered formulation equation (9). For the cell-centered formulation, three different
implementations of the source term are considered: (1) original with the volume fraction gradient estimated
at cell-centers, (2) density scaled and (3) original but applied only in interfacial cells (where 0 < f < 1). For
the original CSF and the case of density ratio of 1, the errors in pressure jump are comparable to the error
with the face-centered CSF formulation, however, the maximum velocity is of order 10�5, about 10 orders
of magnitude greater than with the face-centered formulation, which clearly shows the improvements of the
face-centered formulation over the cell-center formulation. For the other density ratios considered (103, 105

and infinity) we do not observe convergence of the pressure equation. Hence, we tested the cell-centered
formulation with a density-scaled CSF and also by localizing the CSF only to interfacial cells instead to
over a few grid points around the interface. With both these modified implementations, convergence is ob-
served, but errors in the pressure jump are non-negligible due to resulting peaks in the solution. Later in
Figs. 8 and 9 the cell-centered formulation only applied to interfacial cells is compared to the face-centered
formulation when curvatures are computed.

Looking now to only the results of the face-centered formulation, from Table 1, we notice that the spu-
rious currents are of the order of round off for the face-centered formulation, independent of the density
ratio and the surface tension model. For the pressure jump, looking at its total error E(DPtotal), we observe
O(10�2) errors for the CSF and density-scaled CSF approach and O(10�15)–O(10�20) errors with the SSF



Table 1
Error in velocity and pressure after one time step for the inviscid static drop in equilibrium when the exact curvature is specified

q1/q2 |u|max E(DPtotal) E(DPpartial) E(DPmax)

(a) CSF cell-centered

1 2.28 · 10�5 7.76 · 10�2 1.03 · 10�14 7.79 · 10�14

103, 105, Infinity Does not converge

(b) Density-scaled CSF cell-centered

1 2.28 · 10�5 7.76 · 10�2 1.03 · 10�14 7.79 · 10�14

103 1.33 · 10�4 5.60 · 10�1 5.78 · 10�1 4.40 · 10�1

105 1.33 · 10�4 5.62 · 10�1 5.81 · 10�1 4.42 · 10�1

Infinity 1.0 · 10�4 6.30 · 10�1 6.48 · 10�1 4.72 · 10�1

(c) CSF cell-centered (apply only where 0 < f < 1)

1 5.19 · 10�5 4.99 · 10�1 4.68 · 10�1 3.97 · 10�1

103 6.15 · 10�3 1.06 · 10�1 1.29 · 10�1 1.82
105 6.91 · 10�3 1.56 · 10�1 1.77 · 10�1 1.98
Infinity 4.71 · 10�3 2.29 · 10�1 2.52 · 10�1 2.05

(d) CSF face-centered

1 1.25 · 10�18 2.89 · 10�2 2.73 · 10�15 8.72 · 10�14

103 4.97 · 10�18 2.89 · 10�2 3.89 · 10�16 3.89 · 10�16

105 5.70 · 10�19 2.89 · 10�2 1.95 · 10�16 7.79 · 10�16

Infinity 3.05 · 10�19 2.89 · 10�2 4.28 · 10�15 4.87 · 10�15

(e) Density-scaled CSF face-centered

1 1.25 · 10�18 2.89 · 10�2 2.73 · 10�15 8.72 · 10�14

103 1.67 · 10�17 4.28 · 10�2 1.95 · 10�15 1.36 · 10�14

105 1.69 · 10�17 4.28 · 10�2 7.79 · 10�16 1.38 · 10�14

Infinity 1.70 · 10�17 4.28 · 10�2 5.84 · 10�15 1.34 · 10�14

(f) SSF face-centered

1 5.43 · 10�19 1.36 · 10�15 5.84 · 10�15 1.63 · 10�14

103 4.44 · 10�18 1.95 · 10�16 1.17 · 10�15 3.11 · 10�15

105 2.71 · 10�19 3.89 · 10�16 3.70 · 10�15 4.87 · 10�15

Infinity 1.14 · 10�19 2.81 · 10�20 0.0 7.79 · 10�16

The fluid density inside the drop (q1) is 1 and the fluid density outside (q2) is allowed to vary. The drop of radius R = 2 is centered in an
8 · 8 domain, the mesh is 40 · 40 (R/h = 10), and the time step is constant and equal to 10�6.
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approach. To understand the difference in the pressure jump error between CSF and SSF, we plot the cell-
centered pressure versus (x,y) for these two cases in Figs. 5(a) and (b), respectively, and the profiles along
the x- and diagonal-directions in Fig. 6. From these profiles we clearly see that with the continuous ap-
proach there are intermediate pressure points in the interfacial transition region around the interface (Figs.
5(a) and 6) that are not present with the sharp approach (Figs. 5(b) and 6). Since all the grid points are
considered in evaluating DPtotal, the error measure E(DPtotal) reflects a transition region, whereas the error
measure E(DPpartial) does not include the transition region by definition.

With the density-scaled CSF method, the pressure jump error E(DPtotal) is larger than with the CSF
method as shown in Table 1 for density ratios greater than 1, and similarly for E(DPpartial) and E(DPmax).
This suggests that the density-scaled CSF results in a different pressure distribution in the transition region.
Here we note that the definition of the pressure jump is important in the observations, and that (DPtotal) is
the most sensitive quantity for the pressure distributions between the different techniques. From this test
case, we can conclude that:



Fig. 5. Computed pressure obtained with (a) the CSF and (b) SSF models for the inviscid static drop case when the exact curvature is
specified. The grid is uniform and of resolution R/h = 10. The drop of radius R = 2 is centered in an 8 · 8 domain. The surface tension
coefficient is 73 and the density ratio is 103.
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� spurious velocities are of the order of round-off error and the pressure jump is recovered independently
of the density ratios and surface tension models; and

� the pressure distribution is sensitive to the surface tension model, but is independent of the density ratio
across the interface.

4.1.2. Static drop: curvature errors

In Fig. 7, the L1 error norm for curvature, defined as L1 = max|jf � jexact|, is shown for the different
curvature models presented in Section 3 and for different methods for interpolating curvature to cell faces.

For the convolution techniques and using the simple interpolation (Eq. (30)), we consider different kernel
smoothing lengths, d, that are functions of the mesh spacing h:d = 3h, and d = 1.9h1/2 and we also consider
a constant kernel smoothing length d = 0.4 independently of the mesh spacing chosen as R/5 based on the
Williams study [29]. We observe:

� second-order convergence for the case of a constant smoothing length (d = 0.4), which corresponds to
the d = R/5 as suggested in [29];

� first-order convergence when d = 1.9h1/2, but with much lower error than with the constant case of
d = 0.4; and

� no convergence when d = 3h.

We have also investigated different kernels and a �direct� convolution method (where the volume frac-
tions are convolved directly). All convolution techniques yield a similar error level and resulting behavior.
Using the kernel interpolation in Eq. (38) to estimate face curvatures leads to slightly larger errors, which is
not surprising since more surrounding points are taken into account as compared to the simple averaging
interpolation.

The height function is second-order accurate. For a detailed study on curvatures, including a discussion
of its limitation, we refer the reader to the study presented in [6]. When the curvatures are computed with
the height function and when the kernel interpolation to estimate the curvatures at faces (Eq. (38)) is



Fig. 6. Computed pressure along the x-direction at the mid-section y = 4 (a, b) and along the diagonal-direction (c, d) with the CSF
and SSF models for the inviscid static drop when the exact curvature is specified. The grid is uniform and of resolution R/h = 10. The
drop of radius R = 2 is centered in an 8 · 8 domain. The surface tension coefficient is 73 and the density ratio is 103. The time step is
held constant at 10�6.

Fig. 7. L1 face curvature error norms for a circular interface using the convolution technique and the height function method when
the curvatures at faces are interpolated using (a) a simple interpolation scheme (Eq. (30) for the convolution method and Eq. (37) for
the height function method) and (b) the kernel interpolation technique of Eq. (38). The interface is a circle of radius R = 2 centered in
an 8 · 8 domain. In the plot legends above, d is the smoothing length of the kernels and h is the grid spacing.
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employed, slightly smaller errors result. This is primarily because the kernel interpolation helps to smooth
the maximum errors relative to the simple interpolation (Eq. (37)).

In the following, we choose the simple averaging interpolation scheme for both the convolution and
height function approach. This is computationally less expensive than the kernel interpolation scheme
but still allows a meaningful comparison of the methods.

4.1.3. Static drop: continuous surface tension model

4.1.3.1. Comparison of cell-centered to face-centered formulations. First, we compare the results using the
cell-centered (Eq. (17)) and face-centered (Eq. (9)) formulations, the latter being the present balanced-force
algorithm. We perform the computations in 2D on a mesh of resolution R/h = 5 and use the convolution
method to compute the curvatures with a smoothing length d = 1.9h1/2 in the continuous approach for sur-
face tension. The spurious currents and pressure profile through the drop for the two formulations are
shown in Figs. 8 and 9, respectively. The face-centered formulation yields a maximum velocity about 36
times smaller than the cell-centered formulation. The face-centered formulation also yields a pressure pro-
file that does not possess spikes as seen in the cell-centered formulation. Improvements gained with a bal-
anced-force algorithm are clearly evident.

4.1.3.2. 3D static drop. In Table 2, results are presented for a 3D inviscid drop after one and 50 time steps
using the convolution technique and the height function method for curvatures and compared to the results
of Williams et al. [30]. Note that the BKZmethod of Williams et al. [30] is closer to our convolution method,
since we do not use delta functions as in method I and II. The balanced-force algorithm yields spurious
velocities after one time step that are smaller than those obtained with the methods of Williams et al.
[30]. After 50 time steps, using the convolution method, the order of the spurious currents is the same
as the best case of Williams et al. [30], however the growth of the maximum spurious velocity is more
pronounced. With the height function method to estimate curvatures, maximum velocities an order of
magnitude lower than with the convolution technique are obtained. The results of Table 2 show that the
Fig. 8. Plot of the velocity field and drop shapes (f = 1/2 contour) for the inviscid static drop in equilibrium with (a) the cell-centered
formulation of Eq. (17) and (b) the face-centered formulation of Eq. (9). The drop of radius R = 2 is centered in an 8 · 8 domain. The
surface tension coefficient is 73 and the density ratio is 10. The results are shown after one time step with Dt = 10�3 on a grid of
resolution R/h = 5. The curvature is computed using the convolution model with a smoothing length of d = 1.2.



Fig. 9. Computed pressure for the inviscid static drop in equilibrium with (a) the cell-centered formulation of Eq. (17) and (b) the face-
centered formulation of Eq. (9). The drop of radius R = 2 is centered in an 8 · 8 domain. The surface tension coefficient is 73 and the
density ratio is 10. The results are shown after one time step with Dt = 10�3 on a grid of resolution R/h = 5. The curvature is computed
using the convolution model with a smoothing length of d = 1.2.

Table 2
Error in maximum velocity |u|max after one and 50 time steps for a 3D inviscid static drop in equilibrium with different curvature
estimates

Dt = 10�3 Balanced-force algorithm Williams et al. [30]

Convolution Height function BKZ Method I Method II

t = Dt 4.87 · 10�3 4.02 · 10�3 3.49 · 10�1 1.03 · 10�1 8.55 · 10�2

t = 50Dt 1.63 · 10�1 4.02 · 10�2 2.55 8.46 · 10�1 3.86 · 10�1

The drop of radius 2 is centered in an 83 domain, the density ratio is 10, and the time step is constant and equal to 10�3. BKZ represents
the results of the original CSF paper of Brackbill et al. [1] with a smooth volume fraction, Method I represents the Williams et al. [30]
results with convolved curvatures and a step delta function, and Method II represents the Williams et al. [30] results with finite-
differenced normals and a parabolic delta function.

158 M.M. Francois et al. / Journal of Computational Physics 213 (2006) 141–173
effect of an accurate curvature model (i.e., the height function) is still extremely important even when a
balanced-force algorithm is employed.

4.1.4. Static drop: continuous/sharp surface tension model comparison
4.1.4.1. Comparison of the continuous and sharp approaches. Pressure profiles through the drop are shown in
Fig. 10 for continuous and sharp surface tension models when curvatures are estimated with either the con-
volution or height function methods. It is evident from these plots that the continuous method results in a
pressure transition that is not present in the more desirable abrupt jump generated with the sharp method.
We note, however, that oscillations and an overprediction of the pressure inside the drop that is more pro-
nounced with the sharp approach when the convolution method is used for estimating curvatures. This
behavior is also evident in the pressure profiles along the x-direction (y = 4) and along the diagonal-direc-
tion (y = x) in Figs. 11 and 12 for the continuous and sharp approach, respectively. To better understand
this pressure distribution, curvature errors are plotted versus (x,y) in Fig. 13. The plots show the error lo-
cated along the perimeter of the drop, and indicate that errors are smaller with the height function relative
to those obtained with the convolution method. This is also evident in error trends displayed in Fig. 7. Re-



Fig. 10. Computed pressure for the inviscid static drop for the CSF and SSF models using both the convolution and height function
techniques to estimate curvatures. Shown is (a) CSF with the convolution method, (b) SSF with the convolution method, (c) CSF with
the height function method, and (d) SSF with the height function method. The grid is uniform and of resolution (R/h = 10). The drop
of radius R = 2 is centered in an 8 · 8 domain. The surface tension coefficient is 73 and the density ratio is 103.
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call that with the convolution technique, curvatures are estimated at every cell centroid, but the height func-
tion method only generates curvature estimates within interfacial cells (those having 0 < f < 1). With con-
volution-based curvature estimates, errors are largest in the interior of the drop and along the x-direction
(and y-direction by symmetry), which explains the high pressure peaks along the x-direction in Fig. 10(b).
Along the diagonal-direction (not mesh-aligned), curvature errors resulting from the convolution method
are smaller relative to mesh-aligned (e.g., x or y) directions. On the other hand, curvature errors resulting
from height function estimates are largest along non-mesh-aligned directions, e.g., diagonal directions, cor-
responding to a 45� normal angle with equal components. The locations of highest curvature error also re-
sult in higher spurious current velocities, seen in Fig. 17(b). With the sharp model for surface tension, the
drop pressure distribution is more sensitive to the distribution of the error in curvature than with the con-
tinuous approach.



Fig. 11. Pressure along the x-direction at the mid-section y = 4 (a, b) and along the diagonal-direction (c, d) with the CSF model for
the inviscid static drop when curvature is computed with the convolution and height function methods. The grid is uniform and of
resolution R/h = 10. The drop of radius R = 2 is centered in an 8 · 8 domain. The surface tension coefficient is 73 and the density ratio
is 103. The time step is 10�6.
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Next, we consider the performance of these methods under mesh refinement by first investigating the
error in velocity. This error, as shown in Fig. 14 is of same order of magnitude for both the continuous
and sharp surface tension models. With convolution-based curvature estimates, velocity errors are an order
of magnitude greater than those generated with height function curvatures estimates. The maximum veloc-
ity errors are given in quantitative detail in Tables 3–9. From the L1 and L2 velocity error norms in Figs.
14(a) and (b), we note that convolution-based curvature estimates exhibit a first-order convergence with the
sharp approach, but less than first-order with the continuous approach. With height function curvature
estimates, on the other hand, second-order convergence is realized with both the continuous and sharp ap-
proaches. For the L1 error norms (Fig. 14(c)), convolution-based curvature estimates exhibit no conver-
gence with the continuous approach, and less than first-order convergence with the sharp approach.
With height function curvature estimates, the same convergence behavior is observed with both the contin-
uous and sharp models. For the height function, we note that better convergence results when face curva-
tures are interpolated with the kernel approach of Eq. (38) rather than the simple interpolation of Eq. (37)
(Fig. 14(d)). The interpolation acts like a filter, smoothing high-frequency errors.

Pressure jump errors, shown in Fig. 15, exhibit first-order convergence with the continuous surface ten-
sion model and second-order convergence with the sharp model as measured by E(DPtotal) (Fig. 15(a)). Sec-



Fig. 12. Pressure along the x-direction at the mid-section y = 4 (a, b) and along the diagonal-direction (c, d) with the SSF model for
the inviscid static drop when curvature is computed with the convolution and height function methods. The grid is uniform and of
resolution R/h = 10. The drop of radius R = 2 is centered in an 8 · 8 domain. The surface tension coefficient is 73 and the density ratio
is 103. The time step is 10�6.
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ond-order convergence in pressure jump error is realized for both methods as measured by E(DPpartial)
(Fig. 15(b)). The first point in the sharp/convolution results of Fig. 15(a) is not aligned with others due
to intrinsic error in the reconstructed distance function (owing to errors in the interface normal estimates)
[6]. When performing the same computation using an exact distance function, all points in Fig. 15(a) align
with a slope of two (for second-order convergence).

From this static drop comparison of surface tension models (sharp or continuous) and curvature esti-
mates (height function or convolution), we conclude that:

� the order of magnitude of the spurious velocities depend on the curvature method and not on the surface
tension model; and

� the error in pressure jump and distribution depends primarily on the surface tension model.

In the recent work of Kang et al. [12], the authors compare surface tension models using either a ghost
fluid (sharp) or delta function (continuous) method within a level-set formulation, also using an equilibrium
static drop for the comparison framework. They found that the GFM resulted in lower spurious velocities
relative to the delta function formulation. This basic result is inconsistent with those observed here, namely



Fig. 13. Plots of the error in curvatures versus position for a circular drop of radius (R) equal to 2 centered in an 8 · 8 domain. The
grid is uniform and of resolution R/h = 10. Shown is error in curvature versus (x,y) using (a) the convolution method and (b) the
height function. Shown in (c) is error in curvature along the x-direction at y = 4 and (d) error in curvature along the diagonal-direction.
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spurious velocities of same order for a given curvature model are generated with the continuous and sharp
approaches. A possible reason for this difference is that level-set flow algorithm is not adequately designed
to give force balance (between surface tension and pressure gradient forces) using the delta formulation.
Also, in using a delta function (continuous) method within a level-set formulation, the specified Heaviside
function acts to spread fluid properties around the interface more relative to our present volume tracking
framework (where fluid properties are only averaged on interfacial cells). Another notable difference in their
GFM is their consideration of sharp property jumps across the interface that is not considered in our sharp
approach. In our case, to facilitate the sharp/continuous comparison, we have employed an identical, force-
balanced flow algorithm where fluid properties are only averaged in cells containing the interface (for both
the continuous and sharp approach). We also believe that fluid densities should not affect the pressure
jump, owing to the fact that the term 1/qf appears on both sides of the pressure equation and hence should
vanish.

Next we investigate the effect of the fluid properties and the time step on the spurious currents.

4.1.4.2. Effect of fluid properties and integration time step. For this section, the results for the error in max-
imum velocity are presented in Tables 3–9. In Table 3, we investigate results integrated to the same time



Fig. 14. Error in velocity after one time step for the inviscid static drop when the curvature is computed using the convolution
technique and the height function method for different mesh sizes of spacing h. The drop of radius R = 2 is centered in an 8 · 8 domain,
the density ratio is 103, and the time step is held constant at 10�6. (a) and (b) L1 and L2 velocity error norm with the simple
interpolation to estimate curvatures at faces (Eq. (30) for the convolution method and Eq. (37) for the height function method). (c) L1
velocity error norm with the simple interpolation to estimate curvatures at faces (Eq. (30) for the convolution method and Eq. (37) for
the height function method). (d) L1 velocity error norm with the kernel interpolation to estimate curvatures at faces (Eq. (38) for both
the convolution the height function methods).

Table 3
Effect of the time step on the error in maximum velocity |u|max at t = 0.001 for the inviscid static drop in equilibrium using the CSF and
SSF models

Dt Number of time steps CSF SSF

Convolution Height function Convolution Height function

10�3 1 1.94 · 10�3 4.35 · 10�4 2.58 · 10�3 6.28 · 10�4

10�4 101 1.90 · 10�3 3.92 · 10�4 2.53 · 10�3 5.68 · 10�4

10�5 102 1.84 · 10�3 3.64 · 10�4 2.56 · 10�3 4.99 · 10�4

10�6 103 1.81 · 10�3 3.53 · 10�4 2.50 · 10�3 4.79 · 10�4

The drop of radius R = 2 is centered in an 8 · 8 domain, the fluid density ratio is 10, and the mesh is 40 · 40 (R/h = 10).
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(t = 0.001) using different time steps to investigate the dependency on the integration time step. With smal-
ler time steps, the velocity at t = 0.001 are slightly smaller and more pronounced with the height function
method.



Table 4
Effect of the fluid density ratio on the error in maximum velocity |u|max after one time step for the viscous static drop in equilibrium
using the CSF and SSF models

q1/q2 CSF SSF

Convolution Height function Convolution Height function

10 1.94 · 10�6 4.40 · 10�7 2.30 · 10�6 6.29 · 10�7

103 2.84 · 10�6 6.22 · 10�7 2.59 · 10�6 9.07 · 10�7

105 2.89 · 10�6 6.25 · 10�7 2.59 · 10�6 9.12 · 10�7

The drop of radius R = 2 is centered in an 8 · 8 domain and the mesh is 40 · 40 (R/h = 10). The density inside the drop (q1) is 1 and the
density outside (q2) is allowed to vary. The time step is constant and equal to 10�6. The fluid viscosity ratio is 10, with l1 = 10�2 and
l2 = 10�3.

Table 5
Effect of the viscosity ratio on the error in maximum velocity |u|max after 100 time steps for the viscous static drop in equilibrium using
the CSF and SSF models

l1/l2 CSF SSF

Convolution Height function Convolution Height function

1 2.57 · 10�4 4.82 · 10�5 2.73 · 10�4 6.63 · 10�5

10 2.57 · 10�4 4.83 · 10�5 2.73 · 10�4 6.64 · 10�5

100 2.58 · 10�4 4.83 · 10�5 2.73 · 10�4 6.64 · 10�5

The drop of radius R = 2 is centered in an 8 · 8 domain, the fluid density ratio is 103 with the density inside (q1) and outside (q2) the
drop equal to 1 and 10�3, respectively, and the mesh is 40 · 40 (R/h = 10). The time step is constant and equal to 10�6. The fluid
viscosity inside the drop is l1 = 10�2 and outside the viscosity is allowed to vary.

Table 6
Effect of the fluid density on the error in maximum velocity |u|max after one time step for the viscous static drop in equilibrium using the
CSF and SSF models

q1 q2 CSF SSF

Convolution Height function Convolution Height function

1 10�3 2.84 · 10�6 6.22 · 10�7 2.59 · 10�6 9.07 · 10�7

101 10�2 2.84 · 10�7 6.22 · 10�8 2.59 · 10�7 9.07 · 10�8

102 10�1 2.84 · 10�8 6.22 · 10�9 2.59 · 10�8 9.07 · 10�9

103 1 2.84 · 10�9 6.22 · 10�10 2.59 · 10�9 9.07 · 10�10

The drop of radius R = 2 is centered in an 8 · 8 domain, the fluid viscosity ratio is 10 with the viscosity inside (l1) and outside (l2) the
drop equal to 10�2 and 10�3, respectively, and the mesh is 40 · 40 (R/h = 10). The density inside (q1) and outside (q2) the drop is
allowed to vary, but the fluid density ratio is constant and equal to 103. The time step is constant and equal to 10�6.
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In Tables 4 and 5, we investigate the effect of the density and viscosity ratios, respectively. The properties
of fluid 1 (the drop fluid) are kept constant. We notice as the density ratio increases a slight increase in spu-
rious velocities occurs. As the viscosity ratio increases, we observe negligible difference in the results.

In Tables 6–9, the effects of the drop density, surface tension coefficient, time step and drop viscosity
are given, respectively, for a constant density ratio of 103 and viscosity ratio 102. For the parameters
studied here after one time step, we observe that spurious velocities are directly proportional to the
surface tension coefficient and the time step, inversely proportional to the drop density, and indepen-
dent of the drop viscosity. Previously, we also demonstrated that spurious velocities depend on curva-
ture errors. If a simple dimensional analysis is performed, we have u � rDtE(j)2/q1, with E(j) the error
in curvature.



Table 7
Effect of the surface tension coefficient on the error in maximum velocity |u|max after one time step for the viscous static drop in
equilibrium using the CSF and SSF models

r CSF SSF

Convolution Height function Convolution Height function

0.73 2.84 · 10�8 6.22 · 10�9 2.59 · 10�8 9.07 · 10�9

7.3 2.84 · 10�7 6.22 · 10�8 2.59 · 10�7 9.07 · 10�8

73 2.84 · 10�6 6.22 · 10�7 2.59 · 10�6 9.07 · 10�7

730 2.84 · 10�5 6.22 · 10�6 2.59 · 10�5 9.07 · 10�6

The drop of radius R = 2 is centered in an 8 · 8 domain, the fluid density ratio is 103 with the density inside (q1) and outside (q2) the
drop equal to 1 and 10�3, respectively, and the mesh is 40 · 40 (R/h = 10). The time step is constant and equal to 10�6. The viscosity
ratio is 10 with l1 = 10�2 and l2 = 10�3.

Table 8
Effect of the time step magnitude on the error in maximum velocity |u|max after one time step for the viscous static drop in equilibrium
using the CSF and SSF models

Dt CSF SSF

Convolution Height function Convolution Height function

10�3 2.84 · 10�3 6.22 · 10�4 2.59 · 10�3 9.07 · 10�4

10�4 2.84 · 10�4 6.22 · 10�5 2.59 · 10�4 9.07 · 10�5

10�5 2.84 · 10�5 6.22 · 10�6 2.59 · 10�5 9.07 · 10�6

10�6 2.84 · 10�6 6.22 · 10�7 2.59 · 10�6 9.07 · 10�7

The drop of radius R = 2 is centered in an 8 · 8 domain, the fluid density ratio is 10�3 with the density inside (q1) and outside (q2) the
drop equal to 1 and 10�3, respectively, and the mesh is 40 · 40 (R/h = 10). The viscosity ratio is 10 with l1 = 10�2 and l2 = 10�3.

Table 9
Effect of fluid viscosity on the error in maximum velocity |u|max after (a) 100 and (b) 1000 time steps for the viscous static drop in
equilibrium using the CSF and SSF models

l1 l2 CSF SSF

Convolution Height function Convolution Height function

(a) After 100 times steps

1 10�1 2.50 · 10�4 4.73 · 10�5 2.73 · 10�4 6.42 · 10�5

10�2 10�3 2.57 · 10�4 4.83 · 10�5 2.73 · 10�4 6.64 · 10�5

10�4 10�5 2.58 · 10�4 4.83 · 10�5 2.73 · 10�4 6.65 · 10�5

(b) After 1000 times steps

1 10�1 2.22 · 10�3 4.28 · 10�4 2.82 · 10�3 5.57 · 10�4

10�2 10�3 2.41 · 10�3 4.56 · 10�4 2.87 · 10�3 6.22 · 10�4

10�4 10�5 2.41 · 10�3 4.58 · 10�4 2.83 · 10�3 6.26 · 10�4

The drop of radius R = 2 is centered in an 8 · 8 domain, the fluid density ratio is 103 with the density inside (q1) and outside (q2) the
drop equal to 1 and 10�3, respectively, and the mesh is 40 · 40 (R/h = 10). The time step is constant and equal to 10�6. The viscosity
ratio is constant and equal to 10.
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In the results of the viscous cases after 100 and 1000 time steps shown in Table 9, the effect of the drop
dynamic viscosity on the spurious currents is found to be small compared to the other parameters. We have
also performed two computations with the CSF method and the convolution method to estimate curvatures



Fig. 15. Error in pressure jump after one time step for the inviscid static drop when the curvature is computed using the convolution
technique and height function method for different mesh sizes of spacing h. The drop of radius R = 2 is centered in an 8 · 8 domain, the
density ratio is 103, and the time step is constant equal to 10�6. (a) Error DPtotal, (b) error DPpartial.
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with different viscosities with a time step of Dt = 10�5 and for 5000 time steps for a drop of density 1 and
density ratio 103 and surface tension coefficient of 73. We obtain |u|max = 1.19 · 10�1 with l1 = 10�4 and
l2 = 10�5 and |u|max = 4.38 · 10�2 with l1 = 1 and l2 = 10�1. For this case, the effect of viscosity on the
spurious currents is more pronounced which indicates that if the computations were to be continued we
may observe the same relation u � r/l as in previous work [14,19,23,17,28].

4.1.4.3. Total kinetic energy evolution for 2D drop. A quantitative measure of the total spurious velocity is
the total kinetic energy (TKE) of the flow. Examining the evolution of the TKE is an indication of the
growth of the spurious velocities over time. The TKE, defined as
Fig. 16
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. Plot of the total kinetic energy versus time (for 500 time steps) for the inviscid (solid line) and viscous (dashed line) static drop
ilibrium using (a) the CSF and (b) SSF approaches. The drop of radius R = 2 is centered in an 8 · 8 domain on a grid of
tion (R/h = 10). The surface tension coefficient is 73, the density ratio is 10 with q1 = 1 and q2 = 0.1, the time step is constant
to 10�3. The y-axis is in log scale. For the viscous drop, the viscosity ratio is 10 with l1 = 10�2 and l2 = 10�3.
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where Vc is the cell volume and the subscript k denotes material, is shown in Fig. 16 as a function of time
for 2D inviscid and viscous static drops having a density ratio 10. Results are generated for both the (a)
continuous and (b) sharp approach. The integration time step is kept constant at Dt = 10�3 and is done
over 500 time steps. The mesh resolution is such that R/h = 10. With height function curvatures, the total
kinetic energy remains small and decrease slightly with time, whereas with convolution-based curvatures,
the total kinetic energy increases rapidly. There is little difference between the inviscid and viscous cases,
indicating again that the viscosity has a negligible effect on the problem relative to other parameters. Note
Fig. 17. Plot of the velocity vector field and drop shapes (f = 1/2 contour) of the volume fractions at times t = 0.001 and t = 0.5 for the
inviscid static drop. Initially, the drop of radius R = 2 is centered in an 8 · 8 domain on a grid of resolution R/h = 10. The surface
tension coefficient is 73, the density ratio is 10, and the time step is constant equal to 10�3. (a) Velocity vectors magnified 300 times at
time t = 0.001 using convolution for j, (b) velocity vectors magnified 1000 times at time t = 0.001 using height function for j, (c)
velocity vectors not magnified (reference) at time t = 0.5 using convolution for j, (d) velocity vectors magnified 1000 times at time
t = 0.5 using height function for j.
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also that differences between the continuous and sharp surface tension approaches are not significant, sug-
gesting again that the surface tension model choice within our balanced-force algorithm has little effect on
the spurious velocity. As a baseline, in performing the same computations while imposing the exact curva-
ture, the total kinetic energy is observed to remain constant at exactly zero (round off), hence further evi-
dence that our balanced-force algorithm retains an exact balance between pressure gradient and surface
tension forces. We can conclude, then, that spurious velocities in this framework result from error in cur-
vature estimations, and that those induced by height function curvature estimates are lower.

In Fig. 17, the volume fraction half contour (f = 1/2) of the drop and the velocity field are plotted at
times of t = 0.001 and t = 0.5. It is interesting to note that after the first time step (t = 0.001), the structure
and magnitude of the velocity field are already different for the convolution and height function methods.
With the height function method the magnitude of the vortices is lower than with the convolution method.
These vortices are a direct result of inaccuracies in the curvature calculation.

At a much later time (t = 0.5), one can observe the effect of the increase in the velocity field and asso-
ciated vortical structures. With the convolution method for estimating curvature, the drop has lost its cir-
cular shape and shows a regular (symmetric) deformation. With the height function method for estimating
curvatures, the drop remains circular and velocities remain constant relative to the first time step. With the
height function, the TKE oscillates with time. When looking at the vortices, we observe a change in direc-
tion as seen in the relative differences of Figs. 17(b) and (d). The velocity vectors with the height function
seem to be in a �stable� mode, whereas with the convolution they appear to be in an unstable regime, owing
possibly to nonlinear advection effects.

Next, to illustrate dynamic cases, we briefly present results for an oscillating drop and a rising bubble.

4.2. Oscillating drops

Oscillating drops represent a standard test case for surface tension models. We consider the same test
case as in [26]. Initially, the drop interface is an ellipse given by the equation x2/9 + y2/4 = 1. The drop
is placed in a computational domain of size 20 · 20, partitioned with a 64 · 64 mesh. Gravitational forces
are absent. The fluid properties are: q1 = 1, q2 = 0.01, l1 = 0.01, l2 = 5 · 10 �5 and r = 1. Due to the sur-
face tension force, the droplet oscillates.

For this problem, the computed evolution of the total kinetic energy is shown in Fig. 18 for the contin-
uous and the sharp approaches using both the convolution and height function estimates for curvature. For
Fig. 18. Plot of the total kinetic energy versus time for the oscillating drop case using (a) the CSF and (b) the SSF approaches. The
initial drop is an ellipse centered in a 20 · 20 domain on a 64 · 64 mesh.
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the convolution method a smoothing length of d = 0.8 is used. For reasons similar to the static drop prob-
lem, we note again that very little difference is observed between the continuous and sharp approaches, with
the main differences owing to the two curvature models. When the convolution method is used for curva-
ture estimation, the total kinetic energy is smaller (relative to the height function) and the period slightly
greater. We observe similar frequency of the drop oscillations as in [26] and first TKE peak. However, with
our volume tracking method we observe a smaller decay than the point-set (front tracking) method of Tor-
res and Brackbill [26], with the difference here likely due to the kinematical differences of the interface track-
ing methods. The volume tracking method is a purely Eulerian method, reconstructing the interface from
volume fractions, whereas the front tracking method tracks the interface in a Lagrangian way through a set
of marker points. The latter can be more precise in the computations of interfacial geometry such as cur-
vature when the topology is not complex (broken up) as in this case.

4.3. Rising of air bubble in water

Lastly, we consider the rise of an air bubble in water by buoyancy forces. The characteristic non-dimen-
sional number for this situation is the Bond number, or the ratio of gravitational to surface tension forces:
Fig. 19
Bo2 =
d = 0.1
Bo ¼ qgD2

r
; ð48Þ
where D is the bubble diameter. The computational domain for this test problem is chosen to be
[�1,1] · [�1,2]. A drop of radius R = 1/3 is initially placed at (0,0). The mesh is 40 · 60 (R/h = 6.667).
. Computed shapes (f = 1/2 contour) at times t = 0.2, 0.35, and 0.5 for the rising bubble with Bond numbers Bo1 = 73.4 and
59.83 · 103 (low surface tension) when curvatures are computed using the convolution technique with smoothing length
5 = 3/2 (dotted lines) and the height function method (solid lines). (a) Continuous approach (CSF), (b) sharp approach (SSF).
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For the first case, the fluid properties of air (fluid 1) and water (fluid 2) are: q1 = 1.226, q2 = 1000,
l1 = 1.137, l2 = 1.78 · 10�5 and r = 0.0728. The downward-acting gravitational acceleration is g = 9.8.
We note that a more realistic computation can be realized by modifying the boundary conditions to sim-
ulate the air-bubble injection into the water tank. At the bottom of the domain, air can be injected by spec-
ifying a material inflow boundary condition through a few cells. However, to ensure the incompressibility
condition, it requires the addition of some outflow boundary condition cells.

The first case corresponds to a Bond number of Bo1 = 73.4 and Bo2 = 59.83 · 103. For the second case,
the only parameter changed is the surface tension coefficient, which is increased to r = 728, corresponding
to smaller Bond numbers of Bo1 = 7.34 · 10�3 and Bo2 = 5.983. The first case corresponds to the large bub-
ble problem considered by Kang et al. [12].

Computed bubble shapes (measured by the f = 1/2 contour) are shown in Figs. 19 and 20 at times of
t = 0,0.2, 0.35 and 0.5 for the case of Bo1 = 73.4 and Bo2 = 59.83 · 103 and Bo1 = 7.34 · 10�3 and
Bo2 = 5.983, respectively. For case of Bo1 = 73.4 and Bo2 = 59.83 · 103, observable differences in the
shapes are not evident from the use of different curvature estimation methods (convolution or height func-
tion) or different surface tension models (continuous or sharp approach). This is because in this case the
surface tension force is not dominant, i.e., the flow is driven primarily by buoyancy forces.

In the second case, with smaller Bond numbers (Bo1 = 7.34 · 10�3 and Bo2 = 5.983), we observe less
deformations in the bubble shapes since surface tension is more dominant relative to the first case. How-
ever, we observe a difference in the shapes for different curvature and surface tension models. Smaller defor-
mations are observed with the continuous approach relative to the sharp approach, and smaller differences
Fig. 20. Computed shapes (f = 1/2 contour) at times t = 0.2, 0.35, and 0.5 for the rising bubble with Bond numbers Bo1 = 7.34 · 10�3

and Bo2 = 5.983 (large surface tension) on a coarse mesh (40 · 80) when curvatures are computed using the convolution technique with
smoothing length d = 0.15 = 3h (dotted lines) and the height function method (solid lines). (a) Continuous approach (CSF), (b) sharp
approach (SSF).



Fig. 21. Computed shapes (f = 1/2 contour) at times t = 0.2, 0.35, and 0.5 for the rising bubble with Bond numbers Bo1 = 7.34 · 10�3

and Bo2 = 5.983 (large surface tension) on a fine mesh (80 · 120) using the continuous approach (solid line) and sharp approach
(dashed line) when curvatures are computed using the height function method.
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in shapes are observed between the two curvature estimations for a given surface tension model. The result-
ing shapes with the convolution model are not as smooth as with the height function, especially at time
t = 0.5. With the convolution estimation of curvature, a smoothing length d is kept constant throughout
the calculation. A change to the convolution method that would likely improve these results would be
to have an adaptive smoothing length d in different regions along the interface (depending upon local cur-
vature), which is something to be considered in future work.

Next, we perform computations on a finer grid (80 · 120) using the height function method to compute
curvatures with both the continuous and sharp approaches. The computed bubble shapes are shown in
Fig. 21. Here we observe better convergence of the results between the continuous and sharp approaches.
The main difference observed between the two approaches is that the sharp approach yields more bubble
deformation on the side trailing edges, suggesting the importance of the pressure distribution in the bubble
dynamics. Also, as opposed to the level-set results of Kang et al. [12], our results with the VOF method
conserve mass exactly.
5. Summary and conclusions

The motivation for this work was straightforward: the improved modeling of surface tension-driven (low
Weber/Bond number) flows within a volume tracking framework. The metric for this improvement is the
reduction of numerical inaccuracies such as false velocity fields (‘‘spurious currents’’) in standard test prob-
lems. The initial plan was to tackle this problem primarily through the incorporation of a sharp interface
representation (e.g., ghost fluid), as opposed to a continuous (CSF-like) approach. We anticipated that this
would achieve our goals based on previous published successes in the literature. The ultimate path taken,
however, was not what was initially expected. This path led us to three key conclusions and recommenda-
tions, as detailed in this paper, which we again summarize here.

First, we find that the most important consideration for modeling surface tension-driven flows is the
formulation of an overall flow algorithm whose inherent property (by design) is force balance. This is a
subtle (and perhaps obvious) point that is often overlooked in unsteady flow algorithms published today.
The best test for force balance within a time-unsteady algorithm is achieving (and holding) steady state.
We have devised such an algorithm within a cell-centered framework and demonstrated that this algo-
rithm can achieve an exact (to within round-off) balance of surface tension and pressure gradient forces
when interfacial curvatures are known accurately. This important litmus test also underscores an impor-
tant finding, namely that this algorithm indeed legislates force balance when the forces can be accurately
estimated.
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Second, we find that a sharp (ghost fluid) representation for surface tension forces (SSF) can indeed be
formulated within a ‘‘non-LS’’ (volume tracking) framework. This is achieved by temporarily reconstruct-
ing a distance function following the technique of Cummins et al. [6] – a technique that does not require
solving a distance function evolution equation as in standard LS techniques. Given this sharp model for
surface tension (SSF) and a pre-existing continuous surface tension model (CSF), both embodied within
the same balanced-force flow algorithm, an objective comparison of these two models can be made for
the first time within a volume tracking framework. In performing this comparison, we find that the only
difference between the continuous and sharp approaches is in the spatial distribution of the pressure jump
across the interface. The CSF yields a continuous pressure jump and is first-order accurate in pressure,
whereas the SSF yields a sharp pressure jump and is second-order accurate in pressure. However, both
CSF and SSF yield spurious currents of the same order and same convergence behavior for a given curva-
ture model.

Third, we find that the origin of spurious currents within our balanced-force flow algorithm, regardless
of the surface tension model employed, is errors in curvature estimates. We are therefore confident that by
devising more accurate methods for computing curvatures from volume fractions (e.g., the spline-interpo-
lant technique of Ginzburg and Wittum [9]) further reduction in spurious velocities (relative to this work) is
achievable.

Finally, dynamic test cases have been performed on simple yet difficult flow problems (rising bubble,
oscillating drop) to illustrate the versatility (robustness and accuracy) of our overall method. By having
a balanced-force flow algorithm plus a choice of surface tension models and curvature estimate techniques,
the relative merits of each individual model and model combination can be explored in detail. This has
helped to narrow the search for cause and effect in algorithmic flaws.

As a result of this study, models for surface tension-driven flows are becoming increasingly more accu-
rate and reliable. This evolution will rely upon better and better curvature estimate techniques, as shown in
this work, but will also benefit improved models for interface kinematics, e.g., hybrid approaches utilizing
both volume and front tracking methodologies.
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